
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Publisher Summary This chapter explains algebraic number fields and its discreteness, factoring polynomials, valuation theory, unit theorem, and finiteness of class group and their proofs. Number theory is a good test for constructive mathematics as it applies to both discrete and continuous constructions; the constructive development brings to light constructive difficulties that were not at all apparent. The ability to decide whether a polynomial is irreducible or it has a nonconstant factor is used repeatedly in classical expositions of algebraic number theory. The algebraic number theory appears prima facie constructive, and it is common for authors to give routines for the construction of the objects that occur in the subject. The chapter describes the early work by some of the researchers who gave a systematic constructive exposition of the algebraic number fields. However, the development using recursive function theory is also there and is in progress.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
