Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article . 1988
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 1988 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of the carbamino adducts of insulin

Authors: R.H. Griffey; R P Eaton; Marina Scavini;

Characterization of the carbamino adducts of insulin

Abstract

Carbon-13 (13C) nuclear magnetic resonance spectroscopy (NMR) is performed to characterize the formation of carbamino adducts between insulin and (13C) carbon dioxide over a range of pH values in the presence of a physiological concentration (23 mM) of sodium bicarbonate. The peaks from two of the carbamino adducts resonate at higher frequencies than the signal from bicarbonate, at 164.6 and 165.3 ppm, and are attributed to the adducts with the terminal amino groups of phenylalanine B1 and glycine A1. The intensities of these signals vary with the pH, with unique patterns. Over 6% of each terminal amino group exists as the carbamino adduct at the optimum pH values of 7.8 and 8.3. A unique third adduct resonates at 159.3 ppm, and is attributed to lysine B29. This adduct is present on 2% of the insulin molecules at pH 8.2, but has minimal intensity at pH 7.4. No signals from adducts are detected below pH 6.2, where the amino groups exist predominantly in the protonated form. Creation of the adducts is rapid and they are stable for over 4 wk at 37 degrees C. The narrow bandwidth of the resonance of the adduct (4.0-4.5 Hz) relative to the irreversible cyanate adduct is consistent with molecular forms of the carbamino adduct smaller than the 2-Zn-hexamer which is the preponderate form of clinically utilized U-100 insulin (i.e., 100 U/ml).

Related Organizations
Keywords

Carbon Isotopes, Magnetic Resonance Spectroscopy, Protein Conformation, Swine, Circular Dichroism, Biophysics, Carbon Dioxide, Hydrogen-Ion Concentration, Kinetics, Animals, Humans, Insulin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
hybrid