
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 20149635
In living systems, polypeptide chains are synthesised on ribosomes, molecular machines composed of over 50 protein and nucleic acid molecules. As nascent chains emerge from the ribosomal exit tunnel and into the cellular environment, the majority must fold into specific structures in order to function. In this article we discuss recent approaches designed to reveal how such folding occurs and review our current knowledge of this complex self-assembly process.
Protein Folding, Protein Biosynthesis, Animals, Humans, Ribosomes, Biophysical Phenomena
Protein Folding, Protein Biosynthesis, Animals, Humans, Ribosomes, Biophysical Phenomena
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 112 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
