
As the sites of communication between neurons, synapses depend upon precisely regulated protein-protein interactions to support neurotransmitter release and reception. Moreover, neuronal synapses typically exist great distances (i.e. up to meters) away from cell bodies, which are the sources of new proteins and the major sites of protein degradation via lysosomes. Thus, synapses are uniquely sensitive to disruptions in proteostasis, and depend upon carefully orchestrated degradative mechanisms for the clearance of dysfunctional proteins. One of the primary cellular degradative pathways is macroautophagy, hereafter referred to as 'autophagy'. Although it has only recently become a focus of research in synaptic biology, emerging studies indicate that autophagy has essential functions at the synapse throughout an organism's lifetime. This review will discuss recent findings about the roles of synaptic autophagy, as well as some of the questions and issues to be considered in this field moving forward.
Synapses, Autophagy, Animals, Humans, Synaptic Vesicles, Synaptic Transmission
Synapses, Autophagy, Animals, Humans, Synaptic Vesicles, Synaptic Transmission
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 49 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
