Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materials Today Chem...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Materials Today Chemistry
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Sygma; Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes; HAL-IRD
Article . 2023
License: CC BY
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Confinement of Rh nanoparticles in triphenylphosphine oxide-functionalized core-crosslinked micelles for aqueous biphasic hydrogenation catalysis

Authors: Abou-Fayssal, Chantal J.; Fliedel, Christophe; Poli, Rinaldo; Riisager, Anders; Philippot, Karine; Manoury, Eric;

Confinement of Rh nanoparticles in triphenylphosphine oxide-functionalized core-crosslinked micelles for aqueous biphasic hydrogenation catalysis

Abstract

The introduction of phosphine oxide as anchoring groups in the hydrophobic core of amphiphilic star-block copolymers leads to greatly improved confinement of rhodium nanoparticles (RhNPs) inside the nanoreactors with a benefit in aqueous biphasic catalysis. The copolymers are specially designed core-crosslinked micelles (CCMs) forming a stable latex by reversible addition-fragmentation chain-transfer (RAFT) polymerization. They possess a hydrophilic shell made of polycationic 4-vinyl-N-methylpyridinium iodide P(4VPMe+I−) chains, a triphenylphosphine oxide (TPPO)-functionalized polystyrene core and are crosslinked at the inner end of the polystyrene chains by diethylene glycol dimethacrylate (DEGDMA) (TPPO@CCM-C). Ex-situ synthesized RhNPs readily cross the hydrophilic shell and remain anchored within the CCM nanoreactor cores. The RhNP-loaded TPPO@CCM-C latex was applied as catalyst in the hydrogenation of styrene under mild conditions with complete selectivity towards ethylbenzene and average turnover frequency (TOF) up to 12000 h−1, corresponding to a corrected TOF (cTOF) up to 16800 h−1 based on only surface atoms of the RhNPs. Moreover, the catalytic phase proved recyclable after product extraction with diethyl ether, demonstrating efficient retention of the RhNPs by the core TPPO ligands. Although the activity decreased after the first catalytic run, it converged to a stable average TOF of ca. ∼1025 h−1 (cTOF of ca. ∼1440 h−1), which was similar to that of an extensively pre-washed RhNP-TPPO@CCM-C latex. This phenomenon is attributed to a promoter effect of adsorbed ligands, which were used as stabilizer for the RhNPs synthesis and were gradually removed during the work-up washings between recycles.

Countries
France, Denmark, France
Keywords

Rhodium nanoparticles, Rhodium nanoparticles;Polymeric nanoreactors;Aqueous biphasic hydrogenation catalysis;Styrene, Polymeric nanoreactors, [CHIM.CATA]Chemical Sciences/Catalysis, Aqueous biphasic hydrogenation catalysis, Styrene

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Funded by
Related to Research communities