
We study the Dirichlet problem for minimal surface systems in arbitrary dimension and codimension via mean curvature flow, and obtain the existence of minimal graphs over arbitrary mean convex bounded $C^2$ domains for a large class of prescribed boundary data. This result can be seen as a natural generalization of the classical sharp criterion for solvability of the minimal surface equation by Jenkins-Serrin. In contrast, we also construct a class of prescribed boundary data on just mean convex domains for which the Dirichlet problem in codimension 2 is not solvable. Moreover, we study existence and the uniqueness of minimal graphs by perturbation.
33 pages, comments are welcome
Mathematics - Differential Geometry, Mathematics - Analysis of PDEs, Differential Geometry (math.DG), FOS: Mathematics, Analysis of PDEs (math.AP)
Mathematics - Differential Geometry, Mathematics - Analysis of PDEs, Differential Geometry (math.DG), FOS: Mathematics, Analysis of PDEs (math.AP)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
