
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 32386845
NOD-like receptor family pyrin domain containing 6 (NLRP6) is a novel NLR family member, that shows high expression in the intestine and liver (in contrast to NLRP3 in myeloid cells), to regulate inflammation and host defense against microbes. NLRP6 is reported to involved in inflammasome activation, regulation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, antiviral interferon (IFN) signaling, mucus secretion, and antimicrobial peptide (AMP) production. Here, we discuss the recent findings as well as debates regarding: how NLRP6 is induced ("signal I″) and activated ("signal II"); its roles in intestinal cells and immune cells; how NLRP6 and NLRP9 coordinate to regulate the anti-viral immune response in the intestine; potential targeting of NLRP6 in human diseases.
Inflammation, Intestines, Inflammasomes, Intracellular Signaling Peptides and Proteins, NF-kappa B, Humans, Signal Transduction
Inflammation, Intestines, Inflammasomes, Intracellular Signaling Peptides and Proteins, NF-kappa B, Humans, Signal Transduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 67 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
