
Abstract Here presented a generalization of Catalan numbers and Catalan triangles associated with two parameters based on the sequence characterization of Bell-type Riordan arrays. Among the generalized Catalan numbers, a class of large generalized Catalan numbers and a class of small generalized Catalan numbers are defined, which can be considered as an extension of large Schroder numbers and small Schroder numbers, respectively. Using the characterization sequences of Bell-type Riordan arrays, some properties and expressions including the Taylor expansions of generalized Catalan numbers are given. A few combinatorial interpretations of the generalized Catalan numbers are also provided. Finally, a generalized Motzkin numbers and Motzkin triangles are defined similarly. An interrelationship among parametrical Catalan triangle, Pascal triangle, and Motzkin triangle is presented based on the sequence characterization of Bell-type Riordan arrays.
Numerical Analysis, Algebra and Number Theory, Discrete Mathematics and Combinatorics, Geometry and Topology
Numerical Analysis, Algebra and Number Theory, Discrete Mathematics and Combinatorics, Geometry and Topology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
