Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Orthopaed...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Orthopaedic Science
Article . 2021 . 2022
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
OpenAIRE
Article . 2021
Data sources: OpenAIRE
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effect of astaxanthine on ischemia-reperfusion injury in a rat model

Authors: Yasin, Durukan; Mehmet Murat, Bala; Abdullah Alper, Şahin; Tülin, Fırat; Güler, Buğdaycı; Kutay Engin, Özturan;

The effect of astaxanthine on ischemia-reperfusion injury in a rat model

Abstract

Abstract Background We aimed to compare biochemical and histopathological findings of astaxanthin's potential effects on oxidative stress in ischemia/reperfusion damage (I/R). Methods Thirty-two rats were randomly divided into four groups: control group; I/R group; I/R + treatment group; drug group. Astaxanthin was orally administered to groups C and D for 14 days. In groups B and C, the femoral artery was clamped for 2 h to form ischemia. The clamp was opened, and reperfusion was performed for 1 h. In all groups, 4 ml of blood sample through intracardiac puncture and gastrocnemius muscle tissue samples were collected. Serum and tissue samples were analyzed by measuring malondialdehyde (MDA), superoxide dismutase (SOD), total antioxidant capacity (TAC), and total oxidative level (TOL). Necrosis, inflammation, and caspase-3 in muscle tissue collected for histopathological examination were evaluated. Results Tissue MDA, SOD and TOL values significantly differed between groups. Serum MDA, SOD, TOL and TAC values significantly differed between groups. On necrosis examination, there was a significant difference between groups B and C. Although signs of inflammation significantly differed between groups, there was no significant difference between groups A and C and groups A and D. Although there was a significant difference in caspase-3 results between groups, there was no significant difference between groups A and C. Conclusions The use of astaxanthin before and after surgery showed preventive or therapeutic effects against I/R damage.

Subjects by Vocabulary

Microsoft Academic Graph classification: Muscle tissue medicine.medical_specialty Necrosis Ischemia medicine.disease_cause Superoxide dismutase chemistry.chemical_compound Astaxanthin Internal medicine medicine biology business.industry medicine.disease Malondialdehyde medicine.anatomical_structure Endocrinology chemistry biology.protein medicine.symptom business Reperfusion injury Oxidative stress

Keywords

Xanthophylls, Antioxidants, Necrosis, Animals, Orthopedics and Sports Medicine, Inflammation, Caspase 3, Superoxide Dismutase, Rats, Oxidative Stress, Reperfusion Injury, Surgery

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.