
Relational models for contingency tables are generalizations of log-linear models, allowing effects associated with arbitrary subsets of cells in a possibly incomplete table, and not necessarily containing the overall effect. In this generality, the MLEs under Poisson and multinomial sampling are not always identical. This paper deals with the theory of maximum likelihood estimation in the case when there are observed zeros in the data. A unique MLE to such data is shown to always exist in the set of pointwise limits of sequences of distributions in the original model. This set is equal to the closure of the original model with respect to the Bregman information divergence. The same variant of iterative scaling may be used to compute the MLE in the original model and in its closure.
Methodology (stat.ME), FOS: Computer and information sciences, Statistics - Methodology
Methodology (stat.ME), FOS: Computer and information sciences, Statistics - Methodology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
