
AbstractBivariate beta distributions which can be used to model data sets exhibiting positive or negative correlation are introduced. Properties of these bivariate beta distributions and their applications in Bayesian analysis are discussed. Three methods for parameter estimation are presented. The performance of these estimators is evaluated based on Monte Carlo simulations. Examples are provided to illustrate how additional parameters can be introduced to gain even more modeling flexibility. A possible extension of the proposed bivariate beta model and a multivariate generalization are also discussed.
Monte Carlo method, Statistics and Probability, Gamma distribution, Numerical Analysis, Correlation coefficient, Method of moments, Statistics, Probability and Uncertainty, Maximum likelihood estimation
Monte Carlo method, Statistics and Probability, Gamma distribution, Numerical Analysis, Correlation coefficient, Method of moments, Statistics, Probability and Uncertainty, Maximum likelihood estimation
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
