Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Luminesce...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Luminescence
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

rbbascsi3o9 a suitable host for generating blue emitting phosphor doped with ce3 and enhanced cyan green emitting phosphor co doped with eu2 and dy3

Authors: Chaitali M. Mehare; Prachi Tadge; Sudeshna Ray; N.S. Rawat; Shreya Pal; D.K. Koul; S.J. Dhoble;

rbbascsi3o9 a suitable host for generating blue emitting phosphor doped with ce3 and enhanced cyan green emitting phosphor co doped with eu2 and dy3

Abstract

Abstract Inorganic phosphors based on RbBaScSi3O9 (RBS), a chemically and thermally stable host doped with Ce3+; Eu2+ and codoped with Ce3+/Eu2+ and Eu2+/Dy3+ ions have been developed by an ‘amorphous based metal complex method’ using a water soluble silicon compound. The phase purity of the phosphors has been verified by X-ray powder diffraction technique. RBS:Ce3+(4%) phosphor exhibits a broad excitation spectrum in UV spectral region and a broad emission band centred at ∼439 nm with a full-width at half-maximum of ∼85 nm under the UV excitation. RBS:Eu2+ phosphor showed intense cyan-green emission which has been found to increase by three times in Ce3+/Eu2+ co-doped phosphors owing to the energy transfer from Ce3+ to Eu2+ in RBS:Ce3+, Eu2+ phosphor. Moreover, by co-doping RBS with Eu2+ and Dy3+ ions, the cyan-green emission of Eu2+ has been found to enhance considerably; about 6.9 times higher as compared to the emission intensity of RBS:Eu2+ phosphor. This increase is attributed to the generation of large number of traps similar to the pre-existing traps as a result of the incorporation of Dy3+ ion in RBS host and the enhancement in PL has also been substantiated from the enhanced thermoluminescence intensity of RBS:Eu2+, Dy3+ phosphor with respect to RBS:Eu2+ phosphor. Although the afterglow duration of RBS:Eu2+ and RBS:Eu2+, Dy3+ phosphors are in the similar range, but the afterglow intensity of half maxima was found to be 1.63 times higher in RBS:Eu2+,Dy3+ as compared to RBS:Eu2+ which owes to the enhanced photoluminescence intensity of the former as compared to the latter. The short but intense afterglow of RBS:Eu2+,Dy3+ phosphor indicates its potential for making glow bullet for defense application. Furthermore, when compared with, the photoluminescence (PL) emission intensity of near UV- excitable RBS:Eu2+, Dy3+ phosphor has been found to be ∼2 times higher than the green emitting commercial phosphor from Intermix reflecting the potential of this phosphor for the fabrication of phosphor-converted LED.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
bronze