Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Different...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Differential Equations
Article . 2019 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Constructing solutions for the prescribed scalar curvature problem via local Pohozaev identities

Authors: Shuangjie Peng; Chunhua Wang; Suting Wei;

Constructing solutions for the prescribed scalar curvature problem via local Pohozaev identities

Abstract

Abstract This paper deals with the following prescribed scalar curvature problem − Δ u = Q ( | y ′ | , y ″ ) u N + 2 N − 2 , u > 0 , y = ( y ′ , y ″ ) ∈ R 2 × R N − 2 , where Q ( y ) is nonnegative and bounded. By combining a finite reduction argument and local Pohozaev type of identities, we prove that if N ≥ 5 and Q ( r , y ″ ) has a stable critical point ( r 0 , y 0 ″ ) with r 0 > 0 and Q ( r 0 , y 0 ″ ) > 0 , then the above problem has infinitely many solutions, whose energy can be made arbitrarily large. Here, instead of estimating directly the derivatives of the reduced functional, we apply some local Pohozaev identities to locate the concentration points of the bump solutions. Moreover, the concentration points of the bump solutions include a saddle point of Q ( y ) .

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!