Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Ameri...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the American Society of Cytopathology
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of serous fluid volume on next-generation sequencing: a significant step forward for optimization of serous fluid sample collection

Authors: Shaham Beg; Kemin Xu; James P. Solomon; Susan A. Alperstein; Momin T. Siddiqui;

Impact of serous fluid volume on next-generation sequencing: a significant step forward for optimization of serous fluid sample collection

Abstract

Current literature lacks data regarding the influence of serous fluid volume (SFV) on next-generation sequencing (NGS) performed on malignant cases. In this study, we highlight the impact of SFV and other parameters influencing the outcome of NGS analysis.We evaluated 827 samples of serous fluids from 607 patients. Of these, 72 samples underwent NGS analysis. Effusion volume, tumor cellularity, DNA, and RNA quality metrics, as well as clinicopathologic and molecular data were evaluated. Pleural fluid accounted for 56.3% of the fluid samples collected. The most common primary tumor site was gastrointestinal/pancreatobiliary, adenocarcinoma was the most common histologic type. Overall mean volume was 293 mL. The mean Qubit DNA of the 72 effusion samples that underwent NGS analysis was 14.3 ng/μL and mean Qubit RNA was 28.2 ng/μL. The mean Qubit DNA concentration increases in SFV up to 100 mL only.No correlation exists between SFV and mean tumor cellularity. In addition, 74.6% (50 of 67) of sequenced samples showed oncogenic drivers; KRAS was the most common driver followed by EGFR. Three cases displayed ALK fusions, and 1 case displayed NTRK1 fusion. The DNA yield is higher in SFV of 100 mL as a cutoff. Beyond 100 mL, there is no impact of SFV on DNA yield. SFV does not impact RNA yield and mean tumor cellularity. Effusion samples should be submitted for molecular testing despite low tumor cellularity.Our results as a pilot study are important in optimization of SFV for both diagnosis as well as NGS analysis for improving management.

Related Organizations
Keywords

Male, Adult, Aged, 80 and over, High-Throughput Nucleotide Sequencing, Middle Aged, Adenocarcinoma, Specimen Handling, Pleural Effusion, Malignant, Neoplasms, Mutation, Biomarkers, Tumor, Humans, Ascitic Fluid, Female, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!