
AbstractFor the equation with a finite or infinite distributed delay ẋ(t)+∫−∞tx(s)dsR(t,s)=0 the existence of nonoscillatory solutions is studied. A general comparison theorem is obtained which allows to compare oscillation properties of equations with concentrated delays to integrodifferential equations. Sharp nonoscillation conditions are deduced for some autonomous integrodifferential equations. Using comparison theorems, an example is constructed where oscillation properties of an integrodifferential equation are compared to equations with several concentrated delay which can be treated as its finite difference approximations.
Oscillation, Integrodifferential equations, Computational Mathematics, Computational Theory and Mathematics, Distributed delay, Comparison theorems, Modelling and Simulation, Infinite delay
Oscillation, Integrodifferential equations, Computational Mathematics, Computational Theory and Mathematics, Distributed delay, Comparison theorems, Modelling and Simulation, Infinite delay
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
