
It has long been known that many bone diseases, including osteoporosis, involve abnormalities in osteoclastic bone resorption. As a result, there has been intense study of the mechanisms that regulate both the differentiation and bone resorbing function of osteoclast cells. Calcium (Ca(2+)) signaling appears to play a critical role in the differentiation and functions of osteoclasts. Cytoplasmic Ca(2+) oscillations occur during RANKL-mediated osteoclastogenesis. Ca(2+) oscillations provide a digital Ca(2+) signal that induces osteoclasts to up-regulate and autoamplify nuclear factor of activated T cells c1 (NFATc1), a Ca(2+)/calcineurin-dependent master regulator of osteoclastogenesis. Here we review previous studies on Ca(2+) signaling in osteoclasts as well as recent breakthroughs in understanding the basis of RANKL-induced Ca(2+) oscillations, and we discuss possible molecular players in this specialized Ca(2+) response that appears pivotal for normal bone function. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
RANK Ligand, Calcium signaling, Osteoclasts, Cell Biology, Calcium channels, Animals, Humans, Calcium, Calcium Signaling, Bone, Molecular Biology
RANK Ligand, Calcium signaling, Osteoclasts, Cell Biology, Calcium channels, Animals, Humans, Calcium, Calcium Signaling, Bone, Molecular Biology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 116 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
