
Dans cette étude, nous introduisons un nouvel estimateur de type à rapport combiné dans le cadre de l'échantillonnage stratifié par ensemble classé pour estimer la moyenne de la population de la variable de l'étude en incorporant des informations auxiliaires bivariées. Nous menons une analyse comparative complète, y compris les estimateurs traditionnels du ratio combiné, de la régression combinée, de Shabbir et Khan [13] et de Bhushan et Kumar [37]. Nous évaluons le biais et l'erreur quadratique moyenne de l'estimateur proposé sous le degré d'approximation initial. La source de données se compose des données COVID-19 jusqu'en juillet 2023. Grâce à des études empiriques d'investigation et de simulation, notre estimateur proposé démontre systématiquement des performances supérieures à celles de ses homologues, présentant la plus grande efficacité relative. Ces résultats soulignent l'importance pratique de notre recherche dans la santé publique et la prise de décision, soulignant le potentiel de cet estimateur pour fournir des estimations plus précises et fiables dans diverses applications impliquant un échantillonnage par ensemble classé et des informations auxiliaires.
En este estudio, presentamos un nuevo estimador de tipo de relación combinada en el marco del muestreo de conjuntos clasificados estratificados para estimar la media poblacional de la variable de estudio mediante la incorporación de información auxiliar bivariada. Realizamos un análisis comparativo exhaustivo, que incluye la relación combinada tradicional, la regresión combinada, los estimadores de Shabbir y Khan [13], y Bhushan y Kumar [37]. Evaluamos el sesgo y el error cuadrático medio del estimador propuesto bajo el grado inicial de aproximación. La fuente de datos consiste en datos de COVID-19 hasta julio de 2023. A través de la investigación empírica y los estudios de simulación, nuestro estimador propuesto demuestra consistentemente un rendimiento superior en comparación con sus contrapartes, exhibiendo la mayor eficiencia relativa. Estos hallazgos subrayan la importancia práctica de nuestra investigación en salud pública y toma de decisiones, enfatizando el potencial de este estimador para proporcionar estimaciones más precisas y confiables en diversas aplicaciones que involucran muestreo de conjuntos clasificados e información auxiliar.
In this study, we introduce a novel combined ratio type estimator within the framework of Stratified Ranked Set Sampling to estimate the population mean of the study variable by incorporating bivariate auxiliary information. We conduct a comprehensive comparative analysis, including traditional combined ratio, combined regression, Shabbir and Khan [13], and Bhushan and Kumar [37] estimators. We assess the bias and mean squared error of the proposed estimator under the initial degree of approximation. The data source consists of COVID-19 data up to July 2023. Through empirical investigation and simulation studies, our proposed estimator consistently demonstrates superior performance compared to its counterparts, exhibiting the highest relative efficiency. These findings underscore the practical significance of our research in public health and decision-making, emphasizing the potential of this estimator to provide more accurate and reliable estimates in various applications involving ranked set sampling and auxiliary information.
في هذه الدراسة، نقدم مقدرًا جديدًا لنوع النسبة المجمعة في إطار أخذ العينات المصنفة طبقيًا لتقدير المتوسط السكاني لمتغير الدراسة من خلال دمج المعلومات المساعدة ثنائية المتغير. نجري تحليلاً مقارناً شاملاً، بما في ذلك النسبة المجمعة التقليدية، والانحدار المشترك، وشبير وخان [13]، وتقديرات بوشان وكومار [37]. نقوم بتقييم التحيز والخطأ التربيعي المتوسط للمقدر المقترح تحت الدرجة الأولية للتقريب. يتكون مصدر البيانات من بيانات كوفيد-19 حتى يوليو 2023. من خلال التحقيق التجريبي ودراسات المحاكاة، يُظهر المقدر المقترح لدينا باستمرار أداءً متفوقًا مقارنة بنظرائه، مما يُظهر أعلى كفاءة نسبية. تؤكد هذه النتائج على الأهمية العملية لأبحاثنا في مجال الصحة العامة وصنع القرار، مع التأكيد على إمكانات هذا المقدر لتقديم تقديرات أكثر دقة وموثوقية في مختلف التطبيقات التي تشمل أخذ العينات المصنفة والمعلومات المساعدة.
Statistics and Probability, Survey Sampling, Estimation Methods, Data set, Set (abstract data type), Infectious disease (medical specialty), Dependability, Estimator, Environmental science, Reliability engineering, Filter (signal processing), Engineering, Bias, Methods for Handling Missing Data in Statistical Analysis, Skew Distributions and Applications in Statistics, Virology, Ranked Set Sampling, FOS: Mathematics, Pathology, Disease, Statistical Methods for Sensitive Survey Questions, Data mining, Statistics, Stratified sampling, Stratified Ranked Set Sampling, Outbreak, Sampling (signal processing), Engineering (General). Civil engineering (General), Computer science, Programming language, Coronavirus disease 2019 (COVID-19), Study variable, Physical Sciences, Mean squared error, Medicine, Computer vision, Auxiliary variable, TA1-2040, Population Mean Estimation, Stratified Sampling, 2019-20 coronavirus outbreak, Mathematics
Statistics and Probability, Survey Sampling, Estimation Methods, Data set, Set (abstract data type), Infectious disease (medical specialty), Dependability, Estimator, Environmental science, Reliability engineering, Filter (signal processing), Engineering, Bias, Methods for Handling Missing Data in Statistical Analysis, Skew Distributions and Applications in Statistics, Virology, Ranked Set Sampling, FOS: Mathematics, Pathology, Disease, Statistical Methods for Sensitive Survey Questions, Data mining, Statistics, Stratified sampling, Stratified Ranked Set Sampling, Outbreak, Sampling (signal processing), Engineering (General). Civil engineering (General), Computer science, Programming language, Coronavirus disease 2019 (COVID-19), Study variable, Physical Sciences, Mean squared error, Medicine, Computer vision, Auxiliary variable, TA1-2040, Population Mean Estimation, Stratified Sampling, 2019-20 coronavirus outbreak, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
