Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Università de...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Histochemica
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Network of telocytes in the temporomandibular joint disc of rats

Authors: Rusu M; LORETO, CARLA AGATA; Mǎnoiu VS;

Network of telocytes in the temporomandibular joint disc of rats

Abstract

The phenotypes of the temporomandibular joint (TMJ) disc cells range from fibroblasts to chondrocytes. There are relatively few reported studies using transmission electron microscopy (TEM) to determine the ultrastructural features of these cells. It was hypothesized that at least a subpopulation of TMJ stromal cells could be represented by the telocytes, cells with telopodes. In this regard a TEM study was performed on rat TMJ samples. Collagen-embedded networks were found built-up by cells with telopodes with subplasmalemmal caveolae, moderate content in matrix secretory organelles and well-represented intermediate filaments. Appositions of cell bodies were found. Prolongations of such cells were closely related to nerves and microvessels. Our study indicates that the TMJ disc attachment seems equipped with telocytes capable of stromal signaling. However, further studies are needed to assess whether the telocytes belong to a renewed cell population derived from circulating precursors.

Keywords

Male, Chondrocytes, Microscopy, Electron, Transmission, Connective Tissue, Temporomandibular Joint Disc, Animals, Fibroblasts, Rats, Wistar, Stromal Cells, Interstitial Cells of Cajal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!