Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Combinato...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Combinatorial Theory Series A
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Combinatorial Theory Series A
Article . 1974
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Combinatorial Theory Series A
Article . 1974 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The morphology of partially ordered sets

Authors: L. H. Harper;

The morphology of partially ordered sets

Abstract

DEFINITION. XC gn is called a set of incomparable elements if A, B E X and A C B imply A = B. Then Sperner’s Theorem -maxx / X 1 = (,J,,), where X ranges over all sets of incomparable elements in .?3,, . The standard proof of Sperner’s theorem (see Harper-Rota [lo]) is based upon two properties of an , unimodality and matching. By unimodality we mean that (3, the number of k-subsets of an n-set, increases to a maximum and then decreases. By matching we mean that the bipartite graph whose vertices are the k-subsets and (k + I)-subsets respectively have a matching in the sense of P. Hall. Tbe conjunction of matching and unimodality imply that an may be partitioned into chains, each chain containing one [n/2]-subset. Any set X of incomparable elements can intersect each chain in at most one element. The injection of X into the [n/2]-subsets thus defined proves the theorem. In 1945 Erdiis improved Sperner’s theorem to give the maximal cardinality of any set XC .G@,, which has no more than k members lying on any chain as C’1’ ( 1 0 [cn+nr,,z,), the sum of the k largest binomial coefficients. In 1951 de Bruijn et al. developed a variant of Sperner’s theorem for the lattice of divisors of n. In the meantime Sperner’s theorem has been reproved in a number of ways, but by far the most elegant proof is due to Lubell. In 1967 Rota pointed out the possibility of extending Sperner’s theorem to the lattice of partitions of an n-set. The author’s plan in attacking Rota’s conjecture has been to build up an arsenal of theoretical weapons sufficient

Related Organizations
Keywords

Permutations, words, matrices, Partial orders, general, Computational Theory and Mathematics, Research exposition (monographs, survey articles) pertaining to combinatorics, Discrete Mathematics and Combinatorics, Theoretical Computer Science

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Average
Top 10%
Average
hybrid