
AbstractThe dimension D(S) of a family S of subsets of n = {1, 2, …, n} is defined as the minimum number of permutations of n such that every A ∈ S is an intersection of initial segments of the permutations. Equivalent characterizations of D(S) are given in terms of suitable arrangements, interval dimension, order dimension, and the chromatic number of an associated hypergraph. We also comment on the maximum-sized family of k-element subsets of n having dimension m, and on the dimension of the family of all k-element subsets of n. The paper concludes with a series of alternative characterizations of D(S) = 2 and a list of open problems.
Computational Theory and Mathematics, Discrete Mathematics and Combinatorics, Theoretical Computer Science
Computational Theory and Mathematics, Discrete Mathematics and Combinatorics, Theoretical Computer Science
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
