Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 1985 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cell
Article . 1986
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dual functions of the signal peptide in protein transfer across the membrane

Authors: Masayori Inouye; Masatoshi Inukai; Jack Coleman;

Dual functions of the signal peptide in protein transfer across the membrane

Abstract

Most secretory proteins in both prokaryotic and eukaryotic cells are synthesized from a precursor with an amino-terminal extension of 20 to 25 amino acid residues called a signal peptide. These signal peptides are removed during translocation of the secretory proteins across the membrane. When two precursor structures are fused, the internalized second signal peptide was found to exert two different roles, depending upon either the distance between the two signal peptides, or whether the first signal peptide functions cotranslationally or posttranslationally. One role is to function as the usual signal peptide to translocate the protein downstream of the internal signal peptide. The other role is to function as a stop-transfer signal to create a transmembrane protein with the second signal peptide anchoring the protein in the membrane.

Related Organizations
Keywords

Escherichia coli Proteins, Lipoproteins, Cell Membrane, Biological Transport, Protein Sorting Signals, Models, Biological, Recombinant Proteins, Bacterial Proteins, Escherichia coli, Protein Precursors, Protein Processing, Post-Translational, Bacterial Outer Membrane Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!