Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Life Sciencesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Life Sciences
Article . 1974 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Life Sciences
Article . 1974
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydroperoxide peroxidase activity in liver microsomes

Authors: Paul Hochstein; Wayne R. Bidlack;

Hydroperoxide peroxidase activity in liver microsomes

Abstract

Abstract The oxidation of either NADH or NADPH by cumene hydroperoxide in rat liver microsomes is described. The Km′ for the hydroperoxide varied with the pyridine nucleotide utilized (NADPH, Km′ = 0.91 mM; NADH, Km′ = 3.3 mM). Carbon monoxide did not inhibit the peroxidase activity although a variety of other agents which interact with cytochrome P450 did produce inhibitory effects. Moreover, aminotriazole, which stimulated NADPH peroxidase activity, had an inhibitory action on NADPH peroxidase. These various experiments suggest that NADH- and NADPH-dependent peroxidase activity may be mediated by separate components of the microsomal electron transport chain, which may be distinct from but closely interacting with cytochrome P450.

Related Organizations
Keywords

Carbon Monoxide, Antimetabolites, NAD, Rats, Kinetics, Cytochrome P-450 Enzyme System, Peroxidases, Microsomes, Liver, Animals, Oxidation-Reduction, NADP

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!