
pmid: 4926701
Abstract The chemotactic response of unicellular microscopic organisms is viewed as analogous to Brownian motion. Local assessments of chemical concentrations made by individual cells give rise to fluctuations in path. When averaged over many cells, or a long time interval, a macroscopic flux is derived which is proportional to the chemical gradient. By way of illustration, the coefficients appearing in the macroscopic flux equations are calculated for a particular microscopic model.
Chemotaxis, Escherichia coli, Amoeba, Models, Biological, Mathematics
Chemotaxis, Escherichia coli, Amoeba, Models, Biological, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
