Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Chromatog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Chromatography A
Article . 1995 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Isoelectric focusing as a tool for the investigation of post-translational processing and chemical modifications of proteins

Authors: E. Gianazza;

Isoelectric focusing as a tool for the investigation of post-translational processing and chemical modifications of proteins

Abstract

It has been demonstrated that good agreement may be observed between computed and experimental isoelectric point (pI) values when proteins of known sequence are focused under denaturing conditions on immobilized pH gradient IPG slabs, at least in the pH range 4-7.5. Hence, discrepancies between expected and found in this experimental set-up may be reliably ascribed to some kind of post-transcriptional processing, or chemical modification, having taken place in the sample. This evaluation is made easier when the comparison is set between the pI of a parent molecule and that (or those) of one to several of its derivatives as resolved in a single experiment (for instance, as a spot row in two-dimensional maps); no previous knowledge is required in these cases about the amino acid composition of the primary structure. The effects on protein surface charge are discussed in this review mainly for two biologically relevant processes, glycosylation and phosphorylation. Then, the pI shifts are analysed for some protein modifications that may occur naturally but can also be artefactually elicited, such as NH2 terminus blocking, deamidation and thiol redox reactions. Finally, carboxymethylation and carbamylation are used to exemplify chemical treatments often applied in connection with electrophoretic techniques and involving charged residues. Procedures to be applied in order to verify whether a given modification has occurred, and often relying on the focusing of a treated specimen, are detailed in each section. Numerical examples on model proteins are also discussed. As an important field of application of the above concepts may be genetic engineering, an exhaustive bibliographic list dealing with pI evaluation and structural assessment on recombinant proteins is included.

Country
Italy
Related Organizations
Keywords

Animals, Humans, Proteins, Isoelectric Focusing, Protein Processing, Post-Translational, Recombinant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?