Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geochimica et Cosmoc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Geochimica et Cosmochimica Acta
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mantle fluids: Evidence from fluid inclusions

Authors: J. L. Rubenstone; Jeffrey M. Rosenbaum; Alan Zindler;

Mantle fluids: Evidence from fluid inclusions

Abstract

Abstract A total dissolution technique has been developed and used to identify and quantify the incompatible element contents of fluids trapped in inclusions in minerals from peridotite xenoliths using “fluids” in the generic sense (i.e., COH fluids and melts). Fluids from lherzolites, a wehrlite, and a harzburgite host important quantities of alkalis, Ba, U, Th, Pb, and contain Sr and Nd as well. Quantitative application of the technique shows that the CO 2 -rich fluid in a Iherzolite from Nunivak Island, AK, USA and the CO 2 -poor melt in a Iherzolite from San Carlos, Arizona, USA, have incompatible element compositions similar to each other differing only in their K and Ba contents. With the exception of their K contents, the trace element compositions of these fluids resemble those of carbonatites and kimberlites. Major and radiogenic isotope data from the lherzolite and a phlogopite harzburgite from Nunivak suggest that the fluid trapped in the Iherzolite is associated with a carbonatite melt, linked to hydrous metasomatism in the region. A more dilute CO 2 -bearing melt was identified in a wehrlite from Salt Lake Crater, HI, USA resembling Hawaiian alkali basalt in its incompatible element composition. The strontium, neodymium, and lead isotope composition of the fluids resemble those of the surrounding mantle and do not reflect their parent/daughter ratios. Lead isotope data for fluid-bearing clinopyroxene in the wehrlite suggest fluid influx was recent. Conventional and laser oxygen isotope analyses show that most fluid inclusion-bearing xenoliths examined are out of oxygen isotope equilibrium. Diffusion-based arguments suggest that fluid infiltration in these xenoliths occurred over the last 1–10 My. The fluids identified in this study will dominate the incompatible element budget of typical mantle peridotite if present in greater than sub-weight percent quantities.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!