Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Discrete Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Discrete Mathematics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Discrete Mathematics
Article . 1993
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Discrete Mathematics
Article . 1993 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The grid revisted

The grid revisited
Authors: János Pach; Paul Erdős; Imre Z. Ruzsa; Zoltán Füredi;
Abstract

Diese Arbeit bezieht sich auf die Arbeit von \textit{P. Erdős} [Ann. Math. Mon. 53, 248-250 (1946; Zbl 0060.34805)]. Die originale Fragestellung wurde hier in einer verallgemeinerten Form aufgeschrieben: Sei eine Punktmenge \(P=\{p_1,p_2,\ldots,p_n\}\) in einem metrischen Raum \(M\supseteq P\) gegeben. Die Aufgabe ist die Bestimmung (oder die Abschätzung) des Maximums \(f^M(n)\) des Vorkommens einer gegebenen Entfernung bzw. der kleinsten Zahl \(g^M(n)\) verschiedener Entfernungen in einer Menge \(P\), wobei \(f^M(n) = \max\max_{\alpha>0}\mid\{p_i,p_j\}:d(p_i,p_j)=\alpha|\) bzw. \(g^M(n) = \min\mid\{d(p_i,p_j):1\leq i2\) sind, und \(P\) auf einer Sphäre \(S^{d-1}\) liegt, so existiert immer eine Konstante \(c_d\), womit die folgende Abschätzung \[ g^S(n)= g(P) \leq c_4 {n\over\log\log n} \text{ falls } d=4 \text{ bzw. } g^S(n) = g(P) \leq c_dn^{2/(d-2)} \text{ falls } d>4 \] gilt. 2. Wenn \(n\) eine willkürliche natürliche Zahl ist, so existiert immer eine Konstante \(c\), wobei eine Menge \(P\) aus \(n\) Punkten in der Ebene -- in einer allgemeinen Lage -- so gegeben werden kann, daß die folgende Abschätzung \(g(P)\leq n 2^{c\sqrt{\log n}}\) gilt. 3. Zu jedem \(C>0\) gehört je eine ganze Zahl \(n_0=n_0(C)\) so, daß mindestens \(C_n\) Vektoren in der Ebene durch jede Menge \(P\) aus \(n\) Punkten (in einer allgemeinen Lage) bestimmt werden, falls \(n\geq n_0\) ist. 4. Zu einer willkürlichen Zahl \(\varepsilon>0\) gehört die Zahl \(C=C(\varepsilon)\) mit der folgenden Eigenschaft: Falls die Menge \(P\) der \(C_n\) Punkte auf einem Kreisbereich vom Radius \(n\) eingelagert werden kann, wobei die Entfernungen jeder beiden Punkte nicht kleiner als 1 sind, so -- zu jedem Winkel \(\alpha(0 \leq \alpha \leq 2\pi)\) -- existieren drei Punkte von \(P\), die einen solchen Winkel bestimmen, dessen Größe sich von \(\alpha\) höchstens mit \(\varepsilon\) unterscheidet.

Related Organizations
Keywords

Discrete Mathematics and Combinatorics, Erdős problems, Erdős problems and related topics of discrete geometry, Theoretical Computer Science

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Top 10%
Average
hybrid