
AbstractThe classical gambler's ruin problem, i.e., a random walk along a line may be viewed graph theoretically as a random walk along a path with the endpoints as absorbing states. This paper is an investigation of the natural generalization of this problem to that of a particle walking randomly on a tree with the endpoints as absorbing barriers. Expressions in terms of the graph structure are obtained from the probability of absorption at an endpoint e in a walk originating from a vertex v, as well as for the expected length of the walk.
Sums of independent random variables; random walks, Discrete Mathematics and Combinatorics, trees, absorption probability, Trees, Theoretical Computer Science
Sums of independent random variables; random walks, Discrete Mathematics and Combinatorics, trees, absorption probability, Trees, Theoretical Computer Science
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
