
The need to make default assumptions is frequently encountered in reasoning about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non-monotonicity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occuring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Artificial intelligence, top down resolution theorem prover, logic for default reasoning, Other nonclassical logic, Theorem proving (deduction, resolution, etc.), Abstract data types; algebraic specification, incompletely specified worlds
Artificial intelligence, top down resolution theorem prover, logic for default reasoning, Other nonclassical logic, Theorem proving (deduction, resolution, etc.), Abstract data types; algebraic specification, incompletely specified worlds
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.01% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
