Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Tribology International
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Erosive wear behavior of sandstone under low-pressure pulsating water jet

Authors: Vavro, L. (Leona); Vavro, M. (Martin); Nag, A.; Klichová, D. (Dagmar); Stolárik, G. (Gabriel); Gupta, M. K.; Hloch, S. (Sergej);

Erosive wear behavior of sandstone under low-pressure pulsating water jet

Abstract

The consequences of erosion caused by the mutual interaction of water droplets with sedimentary rock such as sandstone are not satisfactorily elucidated in the literature. This topic is important from many points of view, and its practical applications include the protection of cultural heritage or the targeted removal of material. This study assessed the wear rates on Božanov sandstone caused by multiple-droplet impingement, with water droplet impact speeds of v = 58 m/s, 92 m/s and 127 m/s corresponding to supply pressure of p = 2, 5 and 10 MPa, respectively. As a droplet generator, a pulsating water jet with a frequency of 20 kHz was used. Water droplets determined by a nozzle diameter d = 1 mm were distributed along a linear trajectory three times for each run. The water droplet impact density was varied by changing the traverse speed. In order to investigate the development of integrity damage, the samples were scanned using a digital microscope. Material loss was determined via weighing and compared using a non-contact measuring method. The results showed that the erosion responses, such as erosion depth and volume removed, increased with an increase in the supply pressure and a decrease in traverse speed. Moreover, it was found that at the lowest supply pressure p = 2 MPa, the effect of the number of drops density is invariant for traverse speeds in the range of 1–10 mm/s. When the pressure was increased from 5 to 10 MPa, the material removal values tripled. This significant increase may be attributed to the formation of an abrasive pulsating water stream within the created groove.

Country
Czech Republic
Related Organizations
Keywords

wear, droplet impingement, sandstone, erosion, material removal rate

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average