
handle: 11104/0368449
The visual inspection method is a widely used non-contact technique for measuring fatigue crack propagation, but it is inefficient, requiring frequent operator input. Digital image correlation (DIC) methods provide alternatives. However, full-field methods are computationally demanding, while line-based thresholding techniques are sensitive to material load conditions, reducing consistency. This study proposes and validates a new non-contact, physically-based method for real-time crack length evaluation. It eliminates the need for thresholding and enables higher testing frequencies due to its line-based nature, supporting accurate, versatile, and automated fatigue testing. The method integrates the inflection point principle with DIC and machine learning. Visual inspection serves as a validation baseline, using a novel setup that applies both methods simultaneously on the same side of the sample for direct comparison. The proposed method shows good agreement with baseline results, achieving mean absolute errors of 24 mu m (static) and 54 mu m (dynamic). Compared to line-based thresholding, it is four times more accurate (dynamic) and independent of load levels, though 1.7 times slower.
fracture, growth, propagation, Machine learning, Digital image correlation, concrete, closure, Inflection point method, Crack length measurement, Gaussian process regression
fracture, growth, propagation, Machine learning, Digital image correlation, concrete, closure, Inflection point method, Crack length measurement, Gaussian process regression
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
