Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Optical Materials: Xarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Optical Materials: X
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Optical Materials: X
Article . 2025
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Luminescence properties of ZnSe single crystals co-doped with Fe and Cr

Authors: K. Lamonova; A. Prokhorov; M. Schmidbauer; A. Kwasniewski; Yu Kazarinov; M. Konuhova; A. Platonenko; +3 Authors

Luminescence properties of ZnSe single crystals co-doped with Fe and Cr

Abstract

The luminescence properties of two co-doped ZnSe:(Cr, Fe) single crystals, grown by the Bridgman method, have been studied using photoluminescence techniques. Structural characterization by high-resolution X-ray diffraction (HR-XRD), electron paramagnetic resonance (EPR) and scanning electron microscopy (SEM) has revealed that the samples differ in terms of dopant concentration and intrinsic native defects. Analysis of the VIS and near-IR photoluminescence spectra, based on the modified crystal field theory and DFT calculations has shown that Fe and Cr exist in two charge states (+2/+3) and can be located in both tetrahedral and octahedral positions. In the blue light region, quantum dots (QDs) appear. These represent clusters of three Cr-containing octahedral complexes accompanied by Zn vacancies, anticipating the formation of spinel ZnCr2Se4 inclusions in the host chalcogenide ZnSe matrix.

Country
Czech Republic
Related Organizations
Keywords

Luminescence spectra, DFT calculation, QC350-467, Optics. Light, luminescence spectra, TA1501-1820, modified crystal field theory, ZnSe single crystals, Co-doped ZnSe single crystals, Modified crystal field theory, Applied optics. Photonics, EPR, HR-XRD, Co-doped

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold