Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Crystal Growth
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Journal of Crystal Growth
Article . 2019 . Peer-reviewed
http://dx.doi.org/10.1016/j.jc...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of GaN buffer layer under InGaN/GaN MQWs on luminescent properties

Authors: Dominec, Filip; Hospodková, Alice; Hubáček, Tomáš; Zíková, Markéta; Pangrác, Jiří; Kuldová, Karla; Vetushka, Aliaksei; +1 Authors

Influence of GaN buffer layer under InGaN/GaN MQWs on luminescent properties

Abstract

Abstract Although InGaN layers or InGaN/GaN superlattices are commonly used as efficiency improving buffers for LED structure production, there is still a controversy and active discussion about the mechanisms improving the luminescence properties of InGaN QWs grown above such buffers. In this manuscript it is shown that presence of In in the buffer layer is not the primary reason for photoluminescence improvement which can be also achieved by introduction of GaN buffer layer grown at lower temperature under nitrogen atmosphere. SIMS analysis suggests that low temperature buffer layer does not influence the impurity incorporation and hence the PL improvement is caused by suppressed contamination of MQW region grown above the low temperature buffer. AFM images for two samples that differ mostly in morphology however supports another explanation in which formation of larger V-pits is the main reason for the luminescence improvement.

Related Organizations
Keywords

low dimensional structures, InGaN/GaN quantum wells, scintillators, metalorganic vapor phase epitaxy, V-pits, GaN buffer layer

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!