<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sample preparation plays an important role in the DNA analysis workflow. Real samples often include a complex matrix, such as blood and other bodily fluids, or exogenous impurities, e.g., from the scene of crime. Most of the common nucleic acids isolation techniques are based on extractions; however, isotachophoretic focusing has recently attracted some interest for its simplicity and potential for very high enrichment factors and ease of automation. Here, we report on the use of a commercial isotachophoretic instrument for optimization of DNA focusing and preparative fraction collection. In order to achieve a high recovery and enrichment, experimental factors including electric current, sample amount and matrix were investigated experimentally as well as by computer simulation. The sample of a DNA ladder was injected in 30 μl volume and after ITP focusing the DNA zone was recovered using an on-column micropreparative collection valve. The DNA content in the collected sample was verified by fluorescence spectrometry and chip capillary electrophoresis with fluorescence detection.
nucleic acids, sample preparation, Electricity, Isotachophoresis, Nucleic Acids, isotachophoresis, Electrophoresis, Capillary, DNA
nucleic acids, sample preparation, Electricity, Isotachophoresis, Nucleic Acids, isotachophoresis, Electrophoresis, Capillary, DNA
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |