Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS - Institutional...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adaptive ML‐Based Frame Length Optimisation in Enterprise SD‐WLANs

Authors: Estefanía Coronado; Abin Thomas; Roberto Riggio;

Adaptive ML‐Based Frame Length Optimisation in Enterprise SD‐WLANs

Abstract

AbstractSoftware-Defined Networking (SDN) is gaining a lot of traction in wireless systems with several practical implementations and numerous proposals being made. Despite instigating a shift from monolithic network architectures towards more modulated operations, automated network management requires the ability to extract, utilise and improve knowledge over time. Beyond simply scrutinizing data, Machine Learning (ML) is evolving from a simple tool applied in networking to an active component in what is known as Knowledge-Defined Networking (KDN). This work discusses the inclusion of ML techniques in the specific case of Software-Defined Wireless Local Area Networks (SD-WLANs), paying particular attention to the frame length optimization problem. With this in mind, we propose an adaptive ML-based approach for frame size selection on a per-user basis by taking into account both specific channel conditions and global performance indicators. By relying on standard frame aggregation mechanisms, the model can be seamlessly embedded into any Enterprise SD-WLAN by obtaining the data needed from the control plane, and then returning the output back to this in order to efficiently adapt the frame size to the needs of each user. Our approach has been gauged by analysing a multitude of scenarios, with the results showing an average improvement of 18.36% in goodput over standard aggregation mechanisms.

Country
Italy
Keywords

Machine learning · Supervised learning · WLANs · IEEE 802.11 · Frame length optimization · Aggregation · SDN · Network management, Machine learning; Supervised learning; WLANs; IEEE 802; 11; Frame length optimization; Aggregation; SDN; Network management

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
hybrid