
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this paper, we consider the problem of generating smooth Cartesian paths for robots passing through a sequence of waypoints. For interpolation between waypoints we propose to use radial basis functions (RBF). First, we describe RBF based on Gaussian kernel functions and how the weights are calculated. The path generation considers also boundary conditions for velocity and accelerations. Then we present how RBF parameters influence the shape of the generated path. The proposed RBF method is compared with paths generated by a spline and linear interpolation. The results demonstrate the advantages of the proposed method, which is offering a good alternative to generate smooth Cartesian paths.
Robot motion generationn, Path interpolation, Gaussian RBF
Robot motion generationn, Path interpolation, Gaussian RBF
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 4 | |
downloads | 17 |