
The pooling problem, also called the blending problem, is fundamental in production planning of petroleum. It can be formulated as an optimization problem similar with the minimum-cost flow problem. However, Alfaki and Haugland (J Glob Optim 56:897–916, 2013) proved the strong NP-hardness of the pooling problem in general case. They also pointed out that it was an open problem to determine the computational complexity of the pooling problem with a fixed number of qualities. In this paper, we prove that the pooling problem is still strongly NP-hard even with only one quality. This means the quality is an essential difference between minimum-cost flow problem and the pooling problem. For solving large-scale pooling problems in real applications, we adopt the non-monotone strategy to improve the traditional successive linear programming method. Global convergence of the algorithm is established. The numerical experiments show that the non-monotone strategy is effective to push the algorithm to explore the global minimizer or provide a good local minimizer. Our results for real problems from factories show that the proposed algorithm is competitive to the one embedded in the famous commercial software Aspen PIMS.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
