
This paper presents the influence of welding current, electrode-workpiece distance, electrode composition, electrode diameter, electrode tip angle, shielding gas composition, and pulsed current frequency over the arc stagnation pressure of gas tungsten arc welding (GTAW). In this study, arc application tests were carried out over a 1-mm diameter hole on a non-melting water-cooled copper plate. The hole was connected to a differential pressure sensor through an extension tube. As a result, the welding arc pressure was observed to be directly proportional to the square of the welding current and to the tungsten electrode diameter. Moreover, the pressure increases as the electrode-workpiece distance is reduced, and it is inversely proportional to the electrode tip angle, for angles greater than 45°. Also, the electrode composition, the pulsed current frequency, and the gas composition influence the welding arc stagnation pressure.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
