
This paper presents for the first time a robust exact line-search method based on a full pseudospectral (PS) numerical scheme employing orthogonal polynomials. The proposed method takes on an adaptive search procedure and combines the superior accuracy of Chebyshev PS approximations with the high-order approximations obtained through Chebyshev PS differentiation matrices (CPSDMs). In addition, the method exhibits quadratic convergence rate by enforcing an adaptive Newton search iterative scheme. A rigorous error analysis of the proposed method is presented along with a detailed set of pseudocodes for the established computational algorithms. Several numerical experiments are conducted on one- and multi-dimensional optimization test problems to illustrate the advantages of the proposed strategy.
26 pages, 6 figures, 2 tables
Optimization and Control (math.OC), FOS: Mathematics, 65D05, 90-08, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Mathematics, 65D05, 90-08, Mathematics - Optimization and Control
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
