Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Neurobiolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Neurobiology
Article . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Emerging Roles of Meningeal Lymphatic Vessels in Ischemic Stroke

Authors: Richard Simon, Machado; Khiany, Mathias; Larissa, Joaquim; Maiara de Aguiar, da Costa; Anita, Tiscoski; Cinara Ludvig, Gonçalves; Gislaine Tezza, Rezin; +1 Authors

Emerging Roles of Meningeal Lymphatic Vessels in Ischemic Stroke

Abstract

This review highlights the emerging relevance of meningeal lymphatic vessels (MLVs) in the context of ischemic stroke, challenging the conventional view of a privileged immunological central nervous system. MLVs facilitate immunological surveillance by modulating the entry of peripheral immune cells into the meningeal compartment, a process not impeded by the blood-brain barrier. In ischemic stroke, these vessels play a crucial role in the neuroinflammatory cascade, contributing to immune responses by draining antigens and signals to cervical lymph nodes. Their involvement extends to potential contributions to resolving ischemia-induced cerebral edema, impacting fluid homeostasis. The dynamic interaction among MLVs, neuroinflammation, and fluid dynamics suggests promising therapeutic approaches. Targeting these vessels for immunomodulation, fluid drainage, and preserving blood-brain barrier integrity emerges as an innovative approach to improve ischemic stroke outcomes. However, successful clinical translation awaits further exploration of the therapeutic potential of these vessels. The multifaceted contributions of MLVs provide a compelling rationale for ongoing research, aiming to fully harness their therapeutic impact in ischemic stroke management.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!