publication . Article . 2017

Time-dependent seismic hazard in Bobrek coal mine, Poland, assuming different magnitude distribution estimations

Konstantinos Michail Leptokaropoulos; Monika Staszek; Szymon Cielesta; Pawel Urban; Dorota Olszewska; Grzegorz Lizurek;
Open Access
  • Published: 25 Jan 2017 Journal: Acta Geophysica, volume 65, pages 493-505 (issn: 1895-6572, eissn: 1895-7455, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
The purpose of this study is to evaluate seismic hazard parameters in connection with the evolution of mining operations and seismic activity. The time-dependent hazard parameters to be estimated are activity rate, Gutenberg–Richter b-value, mean return period and exceedance probability of a prescribed magnitude for selected time windows related with the advance of the mining front. Four magnitude distribution estimation methods are applied and the results obtained from each one are compared with each other. Those approaches are maximum likelihood using the unbounded and upper bounded Gutenberg–Richter law and the non-parametric unbounded and non-parametric uppe...
Persistent Identifiers
free text keywords: Longwall mining, Structural geology, Magnitude (mathematics), Seismology, Seismic hazard, Return period, Induced seismicity, Kernel density estimation, Geology, Coal mining, business.industry, business
Funded by
EPOS Implementation Phase
  • Funder: European Commission (EC)
  • Project Code: 676564
  • Funding stream: H2020 | RIA
Validated by funder
35 references, page 1 of 3

Aki K (1965) Maximum likelihood estimate of b in the formula logN = a - bM and its confidence limits. Bull Earthq Res Inst Tokyo Univ 43:237-239

Bender B (1983) Maximum likelihood estimation of b-values for magnitude grouped data. Bull Seismol Soc Am 73:831-851

Bowman AW, Hall P, Titterington DM (1984) Cross-validation in non-parametric estimation of probabilities and probability densities. Biometrika 71:341-351

Convertito V, Maercklin N, Sharma N, Zollo A (2012) From induced seismicity to time-dependent seismic hazard. Bull Seismol Soc Am 102:2563-2573 [OpenAIRE]

Cornell AC (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583-1606

Davis R, Foulger G, Bindley A, Styles P (2013) Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Mar Petrol Geol 45:171-185 [OpenAIRE]

Fritschen R (2010) Mining-induced seismicity in the Saarland, Germany. Pure Appl Geophys 167:77-89

Gibowicz S (2009) Seismicity induced by mining: recent research. Adv Geophys 51:1-53 [OpenAIRE]

Gibowicz SJ, Kijko A (1994) An introduction to mining seismology. Academic Press, San Diego

Gibowicz SJ, Lasocki S (2001) Seismicity induced by mining: ten years later. Adv Geophys 44:39-181

Kijko A (2004) Estimation of the maximum earthquake magnitude, mmax. Pure Appl Geophys 161:1655-1681. doi:10.1007/ s00024-004-2531-4 [OpenAIRE]

Kijko A, Sellevoll MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79:645-654

Kijko A, Drzezla B, Stankiewicz T (1987) Bimodal character of the distribution of extreme seismic events in Polish mines. Acta Geophys Pol 35:157-166

Kijko A, Lasocki S, Graham G (2001) Nonparametric seismic hazard analysis in mines. Pure Appl Geophys 158:1655-1676

Kozłowska M (2013) Analysis of spatial distribution of mining tremors occurring in rudna copper mine (Poland). Acta Geophys 61:1156-1169

35 references, page 1 of 3
Any information missing or wrong?Report an Issue