
We demonstrate a generalization of quantum discord using a generalized definition of von-Neumann entropy, which is Sharma-Mittal entropy; and the new definition of discord is called Sharma-Mittal quantum discord. Its analytic expressions are worked out for two qubit quantum states as well as Werner, isotropic, and pointer states as special cases. The R{��}nyi, Tsallis, and von-Neumann entropy based quantum discords can be expressed as limiting cases for of Sharma-Mittal quantum discord. We also numerically compare all these discords and entanglement negativity.
This article is similar to the one published in Quantum Information Processing (2019) 18 (6), 169
FOS: Computer and information sciences, Quantum Physics, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Physical sciences, Quantum Physics (quant-ph)
FOS: Computer and information sciences, Quantum Physics, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Physical sciences, Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
