
Originally introduced as the difference between two possible forms of quantum mutual information, quantum discord has posteriorly been shown to admit a formulation according to which it measures a distance between the state under scrutiny and the closest projectively measured (non-discordant) state. Recently, it has been shown that quantum discord results in higher values when projective measurements are substituted by weak measurements. This sounds paradoxical since weaker measurements should imply weaker disturbance and, thus, a smaller distance. In this work we solve this puzzle by presenting a quantifier and an underlying interpretation for what we call weak quantum discord. As a by-product, we introduce the notion of symmetrical weak quantum discord.
12 pages, 1 figure
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
