
In this paper, a reaction-diffusion neural network with time delay in leakage terms and distributed synaptic transmission delays under homogeneous Neumann boundary conditions is investigated. By analyzing the corresponding characteristic equation, the local stability of the trivial uniform steady state and the existence of Hopf bifurcation are established. By using the normal form theory and the center manifold reduction of partial functional differential equations, explicit formulae are obtained to determine the direction of bifurcations and the stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main results.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
