Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Monitoring and Assessment
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A holistic approach combining factor analysis, positive matrix factorization, and chemical mass balance applied to receptor modeling

Authors: S. Pushpavanam; N. Selvaraju; N. Anu;

A holistic approach combining factor analysis, positive matrix factorization, and chemical mass balance applied to receptor modeling

Abstract

Rapid urbanization and population growth resulted in severe deterioration of air quality in most of the major cities in India. Therefore, it is essential to ascertain the contribution of various sources of air pollution to enable us to determine effective control policies. The present work focuses on the holistic approach of combining factor analysis (FA), positive matrix factorization (PMF), and chemical mass balance (CMB) for receptor modeling in order to identify the sources and their contributions in air quality studies. Insight from the emission inventory was used to remove subjectivity in source identification. Each approach has its own limitations. Factor analysis can identify qualitatively a minimal set of important factors which can account for the variations in the measured data. This step uses information from emission inventory to qualitatively match source profiles with factor loadings. This signifies the identification of dominant sources through factors. PMF gives source profiles and source contributions from the entire receptor data matrix. The data from FA is applied for rank reduction in PMF. Whenever multiple solutions exist, emission inventory identifies source profiles uniquely, so that they have a physical relevance. CMB identifies the source contributions obtained from FA and PMF. The novel approach proposed here overcomes the limitations of the individual methods in a synergistic way. The adopted methodology is found valid for a synthetic data and also the data of field study.

Keywords

Air Pollutants, Models, Chemical, Air Pollution, India, Cities, Factor Analysis, Statistical, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!