<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Let ź be an unknown Borel measure defined on the space Z := X × Y with X ź źd and Y = [-M,M]. Given a set z of m samples zi =(xi,yi) drawn according to ź, the problem of estimating a regression function fź using these samples is considered. The main focus is to understand what is the rate of approximation, measured either in expectation or probability, that can be obtained under a given prior fź ź ź, i.e., under the assumption that fź is in the set ź, and what are possible algorithms for obtaining optimal or semioptimal (up to logarithms) results. The optimal rate of decay in terms of m is established for many priors given either in terms of smoothness of fź or its rate of approximation measured in one of several ways. This optimal rate is determined by two types of results. Upper bounds are established using various tools in approximation such as entropy, widths, and linear and nonlinear approximation. Lower bounds are proved using Kullback-Leibler information together with Fano inequalities and a certain type of entropy. A distinction is drawn between algorithms which employ knowledge of the prior in the construction of the estimator and those that do not. Algorithms of the second type which are universally optimal for a certain range of priors are given.
[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]
[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |