Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Constructive Approxi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Constructive Approximation
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2007
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Discrete Entropies of Orthogonal Polynomials

Authors: Aptekarev, A. I.; Dehesa, J. S.; Martínez Finkelshtein, Andrei; Yáñez García, Rafael José;

Discrete Entropies of Orthogonal Polynomials

Abstract

Let $p_n$ be the $n$-th orthonormal polynomial on the real line, whose zeros are $λ_j^{(n)}$, $j=1, ..., n$. Then for each $j=1, ..., n$, $$ \vec Ψ_j^2 = (Ψ_{1j}^2, ..., Ψ_{nj}^2) $$ with $$ Ψ_{ij}^2= p_{i-1}^2 (λ_j^{(n)}) (\sum_{k=0}^{n-1} p_k^2(λ_j^{(n)}))^{-1}, \quad i=1, >..., n, $$ defines a discrete probability distribution. The Shannon entropy of the sequence $\{p_n\}$ is consequently defined as $$ \mathcal S_{n,j} = -\sum_{i=1}^n Ψ_{ij}^{2} \log (Ψ_{ij}^{2}) . $$ In the case of Chebyshev polynomials of the first and second kinds an explicit and closed formula for $\mathcal S_{n,j}$ is obtained, revealing interesting connections with the number theory. Besides, several results of numerical computations exemplifying the behavior of $\mathcal S_{n,j}$ for other families are also presented.

26 pages, 6 figures

Keywords

Chebyshev polinomios, FOS: Computer and information sciences, Euler–Maclaurin formula, Entropía de Shannon, 42C05, Orthogonal polynomials, Computer Science - Information Theory, Information Theory (cs.IT), Shannon entropy, FOS: Physical sciences, 33C45; 41A58; 42C05; 94A17, 94A17, Mathematical Physics (math-ph), 33C45, Fórmula Euler–Maclaurin, Mathematics - Classical Analysis and ODEs, Polinomios ortogonales, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Chebyshev polynomials, 41A58, Mathematical Physics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Average
Green
bronze