Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Use of electrophoretic techniques and MALDI–TOF MS for rapid and reliable characterization of bacteria: analysis of intact cells, cell lysates, and “washed pellets”

Authors: Jiří Šalplachta; Anna Kubesová; Dana Moravcová; Marie Vykydalová; S. Süle; Hana Matoušková; Jaroslav Horký; +1 Authors

Use of electrophoretic techniques and MALDI–TOF MS for rapid and reliable characterization of bacteria: analysis of intact cells, cell lysates, and “washed pellets”

Abstract

In this study electrophoretic and mass spectrometric analysis of three types of bacterial sample (intact cells, cell lysates, and "washed pellets") were used to develop an effective procedure for the characterization of bacteria. The samples were prepared from specific bacterial strains. Five strains representing different species of the family Rhizobiaceae were selected as model microorganisms: Rhizobium leguminosarum bv. trifolii, R. leguminosarum bv. viciae, R. galegae, R. loti, and Sinorhizobium meliloti. Samples of bacteria were subjected to analysis by four techniques: capillary zone electrophoresis (CZE), capillary isoelectric focusing (CIEF), gel IEF, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). These methods are potential alternatives to DNA-based methods for rapid and reliable characterization of bacteria. Capillary electrophoretic (CZE and CIEF) analysis of intact cells was suitable for characterization of different bacterial species. CIEF fingerprints of "washed pellets" and gel IEF of cell lysates helped to distinguish between closely related bacterial species that were not sufficiently differentiated by capillary electrophoretic analysis of intact cells. MALDI-TOF MS of "washed pellets" enabled more reliable characterization of bacteria than analysis of intact cells or cell lysates. Electrophoretic techniques and MALDI-TOF MS can both be successfully used to complement standard methods for rapid characterization of bacteria.

Country
Czech Republic
Related Organizations
Subjects by Vocabulary

Microsoft Academic Graph classification: Microorganism medicine.disease_cause Mass spectrometry Rhizobium leguminosarum Capillary electrophoresis medicine Chromatography biology Isoelectric focusing Chemistry biology.organism_classification Electrophoresis Matrix-assisted laser desorption/ionization Bacteria

Keywords

Biochemistry, Analytical Chemistry, bacteria, MALDI, Microbial Viability, Electrophoresis, Capillary, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, electrophoretic techniques, Isoelectric Focusing, Rhizobium, Sinorhizobium meliloti

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Average
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.