
handle: 11384/3344
We study Brenier's variational models for incompressible Euler equations. These models give rise to a relaxation of the Arnold distance in the space of measure-preserving maps and, more generally, measure-preserving plans. We analyze the properties of the relaxed distance, we show a close link between the Lagrangian and the Eulerian model, and we derive necessary and sufficient optimality conditions for minimizers. These conditions take into account a modified Lagrangian induced by the pressure field. Moreover, adapting some ideas of Shnirelman, we show that, even for non-deterministic final conditions, generalized flows can be approximated in energy by flows associated to measure-preserving maps.
Mathematics - Analysis of PDEs, FOS: Mathematics, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], 500, 510, Analysis of PDEs (math.AP)
Mathematics - Analysis of PDEs, FOS: Mathematics, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], 500, 510, Analysis of PDEs (math.AP)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
