
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Abstract We derive specific properties of electromagnetism when gravitational effects are not negligible and analyze their impact on new physics at the horizons of black holes. We show that a neutral configuration of charges in a region of high redshift, characterized by a large g tt , produces a highly localized electromagnetic field that vanishes just beyond that region. This phenomenon implies the existence of extensive families of spacetime structures generated by electromagnetic degrees of freedom that are as compact as black holes. We construct neutral bound states of extremal black holes in four dimensions and in five dimensions, where one direction is compact. These geometries are indistinguishable from a neutral black hole, referred to as distorted Schwarzschild, except in an infinitesimal region near its horizon where the entrapped electromagnetic structures start to manifest. The five-dimensional solutions satisfy various criteria for describing black hole microstructure: they increase in size with the Newton constant, are as compact as the Schwarzschild black hole, and have an entropy that scales like M 2.
High Energy Physics - Theory, Black Holes, FOS: Physical sciences, QC770-798, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, Black Holes in String Theory, Classical Theories of Gravity
High Energy Physics - Theory, Black Holes, FOS: Physical sciences, QC770-798, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, Black Holes in String Theory, Classical Theories of Gravity
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
