
doi: 10.1007/bf00934971
A method of conjugate directions, the projection method, for solving unconstrained minimization problems is presented. Under the assumption of uniform strict convexity, the method is shown to converge to the global minimizer of the unconstrained problem and to have an (n − 1)-step superlinear rate of convergence. With a Lipschitz condition on the second derivatives, the rate of convergence is shown to be a modifiedn-step quadratic one.
Numerical methods based on nonlinear programming, Nonlinear programming
Numerical methods based on nonlinear programming, Nonlinear programming
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
